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Ion implantation is widely used to fabricate optoelectronic devices from

many compound semiconductors. For example, boron ion implants can produce the

n-p Junctions in Hgj_xCdxTe for infrared photovoltaic detectors (Ref.1) or

provide isolation of electrically active regions in GaAs microwave devices

(Ref.2). Although there have been many studies on boron implantation into

silicon, little information is available on the behavior of boron implants in

the compound semiconductors (Refs. 3-7). The present work compares the boron

profiles for different semiconductors that had been simultaneously implanted

with boron ions and assesses the effects of typical process annealing

treatments on the boron distributions.

The conditions for the multiple energy implants with the 1OB+ isotopes

are summarized in Table 1. The ion beams were about 70 off-axis to reduce

channeling effects; additional details are given in Refs. 5 and 6. The

samples consisted of (100)-GaAs that was undoped and semi-insulating, (100)-

and (111)-CdTe crystals from II-VI Incorporated, bulk (100)- and

(110)-Hgo.68 Cdo 32 Te from Cominco, epitaxial (111)-Hgo .7Cdo .3Te from Rockwell,

and unoriented Hgo.8 5Mno. 15Te single crystals grown by a modified Bridgeman

method. The average composition for Hgo.8 5Mno. 15Te was obtained from an X-ray

determination of its cubic lattice parameter (i.e., a = 0.6439 nm) and

measured density (7.72 g/cm3 ). The boron ions (1OB) were implanted into

polished faces. Low temperature Hall measurements indicated that boron

implants produced degenerate n-type layers in the Hgo.7Cdo .3Te and

Hgo.85Mno 15Te samples, which are similar to previously described observations

(Ref. 5).

The neutron depth profiling (NDP) determinations of the 10B distributions

from the reaction 1OB(n,)TLi were performed with the 20-MW research reactor

at the National Bureau of Standards. Host of the NDP procedures have been

reported elsewhere (Refs. 5,6). However, to eliminate the "pulse pile-up"

effects which asymmetrically broadened the previous NDP profiles for the

Hg..xCdxTe samples (Refs. 5,6), fully depleted transmission silicon detectors

with nominal 40 pm thicknesses have been used for the present NDP experiments

and have produced higher resolution profiles with minimal distortions. The

NDP results have a 50 nm full-width half-maximum resolution.
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Table 1. Summary of Boron Ion (10B) Implant Conditions

Number of
Implant Nominal Different Ion Dose at Each Ion Beam
Series Target Ion Energies iergy Curren
Label Temp (K) Energies (keV) (10 ' ions/cm 2) (U~Alcm

B 298 2 50 5.0 0.09
100 10.0 0.12

E 78 4 100 0.5 0.037
200 0.5 0.044
300 0.5 0.044
400 0.5 0.036

The boron distributions for the Type-B implant conditions are presented

in Fig. 1, where the NDP results are compared with the theoretical profiles

from a TRIM-86 version of the Monte Carlo computational method developed by

Biersack et al. (Refs. 8,9). Quite good agreement between the NDP and TRIM

profiles are apparent in Fig. 1 for the three distinct materials. However,

some minor differences are found at the ends of the ion ranges with the TRIM

simulations predicting slightly more shallow profiles. The discrepancies may

arise from some channeling contributions or other interactions not included in

the TRIM analyses. The behavior of the Type E boron implants into liquid

nitrogen cooled crystals is summarized in Fig. 2. The peak boron contents in

Fig. 2 are much below those in Fig. I since the implant doses for Type E were

smaller. Once again the NDP measured profiles are in good agreement with the

TRIM calculated ion ranges. The lower target temperatures during Type E

implantation should minimize any thermally activated motion of either boron or

the implant induced defects. The tendency of the boron peak to occur closer

to the surface is also noted in Fig. 2 for both Hg-based crystals. This

behavior is attributed to enhanced backscattering of tne boron ions during

implantation due to the heavier masses of the target atoms as compared to

GaAs.
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Fig. 1. NDP Profiles from (a) (100)-GaAs, (b) (111)-CdTe, and (c)
Hg0 7Cd0  Te after Type B Boron Ion Implants. The predicted
distributdons from TRIM Monte Carlo calculations are denoted by "X"
points.
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The influences of thermal anneals that would be representative of con-

ventional electrical activation conditions were examined for some samples. As

shown in Fig. 1, essentially no changes in the NDP-measured boron profile were

detected from GaAs after 25-min anneals at 850*C under a flowing H2 -Ar

atmosphere. A one-hour vacuum anneal (Refs. 6,7) at 499oC of the Type B

implanted (111)-CdTe caused the boron profile to shift towards the surface.

However, this effect probably arose from the evaporation of about a 25-nm

thick layer of surface material during the anneal (Refs. 6,7). The reduction

of the "pulse-pile-up" distortion (Ref. 5) from the NDP measurements revealed

that some diffusion of the boron had occurred in CdTe during the 5000C anneal

as shown by the increased boron content at the deeper regions beyond the

peak. However, there was no Indication of boron transport in SiO 2 -passivated

Hgo.7Cdo.3Te crystals (Refs. 5,10) for anneals up to 4000C. Unfortunately,

higher annealing temperatures would most likely lead to serious degradation of

this material even with protective surface films.

In summary, neutron depth profiling has been found to be a very useful

and nondestructive method to monitor the boron contents and ion ranges in

several compound semiconductors. More extensive discussions of the effects of

boron implants on these materials that Include characterizations by

electrical, optical, and structural techniques will be presented elsewhere.
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